
Report to Brewer’s CAP Theorem CS341 Distributed Information Systems
Salomé Simon University of Basel, HS2012

 1

Brewer’s CAP Theorem

Report to Brewer’s original presentation of his CAP Theorem at the Symposium

on Principles of Distributed Computing (PODC) 2000

Written by Salomé Simon

Table of Contents
Introduction ... 2

The CAP-Theorem .. 2

Comments on the CAP Theorem ... 3

Formal Proof .. 3

Examples for the spectrum of the C-A Tradeoff .. 4

PNUTS from Yahoo .. 4

Dynamo ... 5

Discussion .. 5

References ... 6

Report to Brewer’s CAP Theorem CS341 Distributed Information Systems
Salomé Simon University of Basel, HS2012

 2

Introduction
At the Symposium on Principles of Distributed Computing in the year 2000, Eric Brewer held a

keynote talk about his experience with the recent changes in the development of distributed

databases. (Brewer, Towards Robust Distributed System, 2000)

In the years before his talk, the size of data grew immensely, making it necessary to find more

scalable solutions than the so far existing ACID-databases. As a result new principles were developed,

summed up under the BASE-paradigm (basically available, soft-state, eventual consistency).

Brewer analyzed the consequences of this paradigm change and its implications, resulting in the CAP-

Theorem which he presented in his talk – at this point more a personal intuition than an actual

proven fact. However, the theorem had such a huge impact that many researchers picked up the

subject, and two years later the theorem had been proven formally.

Over the years, the CAP theorem and has been constantly developed and slight adjustments have

been made, most prominently by Brewer himself who amended in a later paper that some of the

conclusions, while not wrong, could be misleading (Brewer, CAP twelve years later: How the "rules"

have changed, 2012). However, the CAP-theorem still is one of the most important findings for

distributed databases.

The CAP-Theorem
(Brewer, Towards Robust Distributed System, 2000)

A distributed database has three very desirable properties:

1. Tolerance towards Network Partition

2. Consistency

3. Availability

The CAP theorem states: You can have at most two of these properties for any shared-data system

Theoretically there are three options:

1. Forfeit Partition Tolerance

The system does not have a defined behavior in case of a network partition. Brewer names 2-

Phase-Commit as a trait of this option, although 2PC supports temporarily partitions (node

crashes, lost messages) by waiting until all messages are received.

2. Forfeit Consistency

In case of partition data can still be used, but since the nodes cannot communicate with each

other there is no guarantee that the data is consistent. It implies optimistic locking and

inconsistency resolving protocols.

3. Forfeit Availability

Data can only be used if its consistency is guaranteed. This implies pessimistic locking, since

we need to lock any updated object until the update has been propagated to all nodes. In

case of a network partition it might take quite long until the database is in a consistent state

again, thus we cannot guarantee high availability anymore.

Report to Brewer’s CAP Theorem CS341 Distributed Information Systems
Salomé Simon University of Basel, HS2012

 3

The option of forfeiting Partition Tolerance is not feasible in realistic environments, since we will

always have network partitions. Thus it follows that we need to decide between Availability and

Consistency, which can be represented by ACID (Consistency) and BASE (Availability).

However, Brewer already recognized that the decision is not binary. The whole spectrum in between

is useful; mixing different levels of Availability and Consistency usually yields a better result.

Comments on the CAP Theorem
While the theorem is flawless in its correctness, the formulation can be misleading about the

implications:

1. The theorem presents the three properties as equal. But while Consistency and Availability

can be measured in a spectrum, Partition Tolerance is rather binary. One can vary the

definition of Partition Tolerance, but in the end one can only say the system supports

Partition Tolerance or it does not.

2. If we vary the definition of Partition Tolerance it starts to merge with the Availability

property. A temporary Partition Tolerance might as well be called a temporary Unavailability.

3. Partition Tolerance can only be forfeited in a hypothetical environment where no partition

can happen. But any real system that would forfeit partition tolerance would not be working

correctly and thus the option Availability and Consistency should not be considered.

In my opinion the theorem would have made its implications clearer, if it would mention Partition

Tolerance as a given property, and say that under these conditions only Consistency or Availability

can be guaranteed. Better even it should reflect the spectrum of possibilities, i.e. it should speak of a

Consistency-Availability Tradeoff rather than of a choice between the two.

In a later paper (Brewer, CAP twelve years later: How the "rules" have changed, 2012), Brewer

suggested another improvement which portraits the factor of Partition Tolerance clearer: This

tradeoff between Consistency and Availability only has to be considered when the network is

partitioned. At any time where the network is not partitioned, we can have both Consistency and

Availability. One can interpret this fact that the system should forfeit Partition Tolerance as long as

there is no partition, and as soon as a network partition occurs it needs to switch its strategy and

choose a tradeoff between Consistency and Availability.

Formal Proof
In 2002 Gilbert and Lynch provided a formal proof (Gilbert & Lynch, 2002) of the cap theorem for the

following three network types:

1. Asynchronous network with message loss

2. Asynchronous network without message loss

3. Partially synchronous network with local clocks

We will however only discuss the proof for asynchronous networks with message loss.

Report to Brewer’s CAP Theorem CS341 Distributed Information Systems
Salomé Simon University of Basel, HS2012

 4

First Gilbert and Lynch defined the three properties:

1. Consistency (atomic data objects)

A total order must exist on all operations such that each operation looks as if it were

completed at a single instance. For distributed shared memory this means (among other

things) that all read operations that occur after a write operation completes must return the

value of this (or a later) write operation.

2. Availability

Every request received by a non-failing node must result in a response. This means, any

algorithm used by the service must eventually terminate.

3. Partition Tolerance

The network is allowed to lose arbitrarily many messages sent from one node to another.

With this definition, the theorem was proven by contradiction:

Assume all three criteria (atomicity, availability and partition tolerance) are fulfilled. Since any

network with at least two nodes can be divided into two disjoint, non-empty sets {𝐺1 ,𝐺2}, we define

our network as such. An atomic object 𝑜 has the initial value 𝑣0. We define 𝛼1 as part of an execution

consisting of a single write on the atomic object to a value 𝑣1 ≠ 𝑣0 in 𝐺1 . Assume 𝛼1 is the only

client request during that time. Further, assume that no messages from 𝐺1 are received in 𝐺2, and

vice versa. Because of the availability requirement we know that 𝛼1 will complete, meaning that the

object 𝑜 now has value 𝑣1 in 𝐺1.

Similarly 𝛼2 is part of an execution consisting of a single read of 𝑜 in 𝐺2. During 𝛼2 again no messages

from 𝐺2 are received in 𝐺1 and vice versa. Due to the availability requirement we know that 𝛼2 will

complete.

If we start an execution consisting of 𝛼1 and 𝛼2, 𝐺2 only sees 𝛼2 (since it does not receive any

messages or requests concerning 𝛼1. Therefore the read request from 𝛼2 still must return the value

𝑣0. But since the read request starts only after the write request ended, the atomicity requirement is

violated, which proves that we cannot guarantee all three requirements at the same time. q.e.d.

Examples for the spectrum of the C-A Tradeoff

PNUTS from Yahoo
(Cooper & al, 2008)

PNUTS is a Data Serving Platform which forfeits serializability for transactions in favor of high

availability. They argue that in most cases, serializable transactions are not necessary, thus they are

not worth the impracticability and the loss of availability, on which Yahoo’s web applications depend.

But they also think that the pure BASE-driven approach of eventual consistency is too weak a

guarantee. As example they describe a photo share application on which you can upload pictures and

choose who has permission to see your photos. Now imagine a user wants to execute two updates in

this exact order: exclude his mother from the users eligible to see his pictures, and then post photos

Report to Brewer’s CAP Theorem CS341 Distributed Information Systems
Salomé Simon University of Basel, HS2012

 5

of the recent spring-break. Obviously this user would be very unhappy about eventual consistency, if

during the time in which the database was not consistent yet the mother logged into her account and

saw the spring-break pictures.

As a result from the considerations above PNUTS provides a consistency model which is in the middle

of the C-A-tradeoff: “per-record timeline consistency: all replicas of a given record apply all updates

to the record in the same order”. This means, the database will not immediately be consistent, but it

is guaranteed that all updates made on an object are done in the same order they occurred in the

timeline for all replicas of the object.

Dynamo
(DeCandia & al, 2007)

Dynamo is a completely decentralized Key-value Store developed by Amazon which strives for high

availability. It incorporates the “eventual consistency” principle from BASE: a decentralized replica

synchronization protocol maintains consistency during update with a quorum-like approach and

object versioning. Through gossip failures can be detected.

Discussion
If we imagine the tradeoff between Consistency and Availability as a scale with one extreme meaning

sacrificing all consistency for availability and the other extreme meaning sacrificing all availability for

consistency, there is no accurate measure to tell us where exactly on that scale a certain database

implementation is. We can however compare two databases with each other and say which one is

nearer at the consistency or availability extreme. It is also important to mention that no

implementation of either extreme is feasible; e.g. while BASE aims for availability it is still eventually

consistent, so it is not on the availability extreme.

The decision which tradeoff is the best for a product has to be considered carefully. There is no right

answer. We need to weight carefully how long a user is willing to wait for an answer of a system and

how tolerant he is of inconsistencies. Of course, money also plays a considerable role for enterprise

applications, and it has shown that with this constraint, systems tend more towards availability: a

user does not want to wait too long on a web application; he rather reads temporarily inconsistent

data, since for many applications the data is not so critical that it must be consistent.

We also need to consider that different transactions inside the same program maybe have different

consistency or availability requirements: while an Amazon user doesn’t mind too much if the article

he put into the shopping cart is not available anymore when he proceeds to the checkout half an

hour later, he will not be happy if he receives an email after the successfully buy of the product that

it is not available and his order has to be cancelled (after all, he received a confirmation that his

order has been placed successfully). On the other hand he would mind if he needs to wait 2 minutes

every time he puts something in the shopping cart, while waiting 2 minutes for the final checkout

should not be too tragic.

Report to Brewer’s CAP Theorem CS341 Distributed Information Systems
Salomé Simon University of Basel, HS2012

 6

References
Brewer, E. (2012, February). CAP twelve years later: How the "rules" have changed. Computer, vol.

45, no. 2 , pp. 23-29.

Brewer, E. (2000). Towards Robust Distributed System. Symposium on Principles of Distributed

Computing (PODC).

Browne, J. (2009, January 11). julianbrowne.com. Retrieved January 04, 2013, from

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

Cooper, B., & al. (2008). PNUTS: Yahoo's hosted data serving platform. VLDB .

DeCandia, G., & al. (2007). Dynamo: Amazon's Higly Available Key-value Store. ACM Press New York ,

pp. 205-220.

Gilbert, S., & Lynch, N. (2002, June). Brewers Conjunction and the Feasability of Consistent, Available,

Partition-Tolerant Web Services. ACM SIGACT News , p. 33(2).

Shim, S. S. (2012, February). Guest Editor's Introduction: The CAP Theorem's Growing Impact.

Computer, vol. 45, no. 2 , pp. 21-22.

